skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fuchs, Jaco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Attosecond photoionization time delays reveal information about the potential energy landscape that an outgoing electron wavepacket probes upon ionization. In this study, we experimentally quantify the dependence of the time delay on the angular momentum of the liberated photoelectrons. For this purpose, we resolved electron quantum-path interference spectra in energy and angle using a two-color attosecond pump–probe photoionization experiment in helium. A fitting procedure of the angle-dependent interference pattern allows us to disentangle the relative phase of all four quantum pathways that are known to contribute to the final photoelectron signal. In particular, we resolve the dependence on angular momentum of the delay of one-photon transitions between continuum states, which is an essential and universal contribution to the total photoionization delay observed in attosecond pump–probe measurements. For such continuum–continuum transitions, we measure a delay between outgoing s and d electrons as large as 12 attoseconds, close to the ionization threshold in helium. Both single-active-electron and first-principlesab initiosimulations confirm this observation for helium and hydrogen, demonstrating the universality of the observed delays. 
    more » « less